На главную

НАЗЕМНАЯ ИНФРАСТРУКТУРА

 
 

СОСТОЯНИЕ И ПЕРСПЕКТИВЫ РАЗВИТИЯ НАЗЕМНОГО КОМПЛЕКСА И СРЕДСТВ УПРАВЛЕНИЯ КА

Общие принципы построения наземного комплекса управления

Антенные системы для дальней космической связи

Детальная информация противоскользящее покрытие купить на нашем сайте. Подобрать текстиль оптом от производителя по лучшим ценам вы можете на нашем сайте.

Наибольшее применение в наземных комплексах космической связи получили полноповоротные параболические антенны и антенные решетки, образованные из нескольких антенн. Важнейшими характеристиками антенн, определяющими энергетику радиолиний, являются коэффициент направленного действия (КНД) и эффективная площадь 5эф зеркала антенны, связанные между собой выражением

где SЭФ = KИ.ПS, S — геометрическая площадь раскрытия зеркала, КИП — коэффициент использования площади.

Коэффициент использования площади характеризует качество конструкции и изготовления антенны и определяется формой распределений амплитуды и фазы радиоволн в раскрыве зеркала. Получено следующее приближенное выражение для КНД антенны в зависимости от отклонения формы зеркала от расчетной вследствие неточности его изготовления, а также вследствие деформаций, вызванных собственной массой антенны, ветровыми нагрузками и неравномерностью солнечного нагрева ее конструкции:

где а = 8/0 — относительная точность изготовления зеркала, 8 — среднеквадратическое отклонение реальной поверхности зеркала от расчетной, 0 — диаметр зеркала антенны; К0 — коэффициент использования площади антенны при отсутствии отклонений формы зеркала от расчетной.

Выражение имеет экстремум относительно A. КНД достигает максимального значения, равного J^0/(64a) при Аопт = 4л (70. При заданных значениях 5 и 0 величина Аопт является минимальной рабочей длиной волны для антенны, при А, < Аопт КНД, а следовательно, и SЭф быстро уменьшаются, и антенна перестает эффективно работать.

Относительная точность изготовления лучших образцов совре-менных крупноразмерных параболических антенн составляет (1,5...5)*10-5. Тогда, если принять за оптимальную длину волны для дальней космической связи А, = 3 см, а достигнутую точность изготовления зеркала a = 1,5*10-5, максимальный диаметр параболической антенны

т.е. при заданных условиях не представляется целесообразным создание полноповоротных параболических антенн более указанного диаметра.

В реальных условиях среднеквадратическое отклонение формы зеркала от расчетной из-за деформаций, вызванных гравитационными, ветровыми нагрузками и солнечным нагревом, может достигать десятков миллиметров для антенн диаметром 60...70 м, что ведет к соответствующему увеличению а. Эти факторы также являются серьезным препятствием на пути увеличения размеров антенн данного типа и должны учитываться при выборе конкретного места размещения антенны и конструкции ее зеркала. В целях дальнейшего повышения энергетического потенциала радио-линий дальней космической связи рациональным является создание антенных решеток на основе нескольких крупноразмерных антенн и когерентного сложения мощностей сигналов, принимаемых каждой антенной.

В настоящее время в мире функционирует ряд уникальных полноповоротных параболических антенн большого диаметра, используемых в составе радиотехнических комплексов дальней космической связи и для радиоастрономии. Самая крупная из них построена в Германии — радиотелескоп Астрономического института им. Макса Планка вблизи Бонна с диаметром зеркала 100 м. Данный радиотелескоп имеет очень высокие характеристики по сравнению с антеннами такого класса. В табл. представлены характеристики некоторых больших параболических антенн, эксплуатируемых в различных странах.

Крупноразмерные антенны для дальней космической связи

Максимальный размер бортовых антенн дальних КА ограничен диаметром обтекателя ракеты-носителя при жесткой конструкции зеркала и составляет 3...4 м. В настоящее время достигнуты большие успехи в изготовлении раскрывающихся параболических антенн зонтичного типа. При этом требуемые точности сохранения формы параболоида для X = 3 см обеспечиваются при диаметре до 10 м и более.

На рис. представлена зависимость максимальной скорости передачи информации по радиолинии "КА — Земля" от дальности связи при следующих значениях параметров системы:

Зависимость скорости передачи информации в радиолинии от дальности связи

А, = 3,6-10-2 м; Рб = 20 Вт; 0б = 3,7 м; КядЛ = 0,5; 03 = 70 м; ^и.п.з = 0,7; Лх = 0,7; Тэф = 35 К; Afan = 4F,' где индекс "б" означает борт; "з" — зеркало.

Данные значения параметров близки к предельным, достигнутым в современных радиотехнических комплексах дальнего космоса. С учетом особенностей, характерных для системы управления КА дальнего космоса, построены НКУ ДКА НАСА США и Российской Федерации.

В состав НКУ ДКА НАСА США входят:

  • три центра дальней космической связи (ЦДКС), расположенные вблизи городов Голдстоун (США), Мадрид (Испания) и Канберра (Австралия);
  • центр управления полетом в г. Пассадена (США);
  • средства связи и передачи данных.

Все наземные станции ЦДКС объединены в систему DSN (Deep Space Network) и разнесены на поверхности Земли примерно на 120° по долготе и 35...40° по широте. Таким образом, станции DSN позволяют поддерживать непрерывную связь с межпланетными КА в течение суток. Каждая станция DSN оснащена тремя параболическими антеннами: одной диаметром 70 м и двумя — 34 м. Рабочие частоты радиолиний "Земля — КА" — 2,1 ГГц (А = 14 см); "КА — Земля" — 2,2 ГГц (А = 13 см) и 8,4 ГГц (А = 3,6 см).

В 1980-х гг. НАСА провело модернизацию наземной сети станций DSN c целью повышения энергетических характеристик ее радиоканалов для обеспечения полета КА Voyager-2, запущенного в 1977 г. и достигшего в августе 1981 г. окрестностей Сатурна, в январе 1986 г. — Урана, в августе 1989 г. — Нептуна. Увеличение эффективной апертуры наземных приемных систем осуществлялось путем создания синтетических решеток из нескольких разнесенных антенн и увеличения диаметра зеркала основных антенн ЦДКС с 64 до 70 м.

В течение 1981-1989 гг. к комплексу антенн в Канберре были подключены радиотелескопы диаметром 64 м в Парксе (Австралия) и Усуде (Япония), а в комплексе Голдстоуна была дополнительно использована сверхбольшая антенная решетка из 27 антенн диаметром 25 м радиоастрономической обсерватории в Нью-Мексико (США). В результате принятых мер общее усиление радиосигнала с КA Voyager-2 на станциях в Канберре и Голд стоуне было повышено более чем на 5,5 дБ. Подключение австралийской и японской антенн к сети DSN обеспечивает также повышение надежности приема сигнала с КА в случае плохих метеоусловий в районе одной из антенн.

Целью дальнейшего развития сети DSN является совместное использование американской антенной сети, объединяющей комплекс в Голдстоуне и сверхбольшую антенную решетку в Нью-Мексико, и австралийско-японской сети, в которую входят комплекс в Канберре и радиотелескопы в Парксе и Усуде.

В состав НКУ ДКА Российской Федерации входят:

  • два центра дальней космической связи: западный — на объекте "Медвежьи озера" Московской области и восточный — около Уссурийска;
  • центр управления полетом в НПО им. С.А. Лавочкина (г. Химки Московской области);
  • средства связи и передачи данных.
Западный и восточный ЦДКС разнесены по долготе на 100° и обеспечивают непрерывную связь с межпланетными КА в течение — 18 ч в сутки. ЦДКС в "Медвежьих озерах" оснащен параболической антенной диаметром 64 м.
Общий вид радиотелескопа дальнего космоса ("Медвежьи озера")

ЦДКС вблизи Уссурийска имеет в своем составе три крупноразмерные антенны диаметрами 70; 32 и 25 м. Рабочие частоты:

  • радиолинии "Земля — КА" — 5 ГГц (X = 6 см) и 0,77 ГГц (k = 39 см);
  • радиолинии "КА — Земля" — 8,4 ГГц (k = 3,6 см); 5,9 ГГц (А, = 5,1 см) и 0,94 ГГц (k = 32 см).

С целью повышения надежности управления ДКА и проведения высокоточных измерений их угловых координат радиоинтерферометрическим методом в составе НКУ дополнительно используется украинский ЦДКС, размещенный вблизи г. Евпатории, имеющий в своем составе высокоэффективные антенные системы диаметром 70; 32 и 25 м. Энергетические характеристики радиолиний ЦДКС НКУ ДКА позволяют обеспечить надежное управление ДКА, прием с них научной информации и проведение траекторных измерений на дальностях, превышающих радиус Солнечной системы (6 млрд км).

 
 
 
вверх!