На главную

ОСНОВНЫЕ ТЕНДЕНЦИИ РАЗВИТИЯ КОСМОНАВТИКИ В РОССИИ

 
 

РАЗВИТИЕ И ОСОБЕННОСТИ СИСТЕМЫ СРЕДСТВ ВЫВЕДЕНИЯ

Перспективные направления совершенствования энергетических и двигательных установок ракетно-космической техники

Купить реагенты противогололедные в москве купить антигололедные реагенты в москве. Интернет магазин шин и дисков в екатеринбурге 6 колес.

Двигательные и энергетические установки (ЭУ) ракетно-космических комплексов относятся к числу наиболее трудоемких, сложных в отработке и производстве подсистем. Уровень энергомассового совершенства, ресурс активного функционирования, надежность, технико-экономические показатели ДУ и ЭУ во многом определяют функциональные возможности и технико-экономическую эффективность ракетно-космического комплекса в целом. Сроки разработки и отработки новых образцов ДУ и ЭУ весьма длительны — 5...7 лет при условии наличия достаточного научно-технического задела. Именно поэтому следует обеспечивать его опережающее развитие. Только при таком условии могут своевременно разрабатываться и создаваться комплексы и системы, не уступающие по основным показателям зарубежным и способные конкурировать с ними на мировом рынке.

На рис. представлены результаты прогноза уровней энергопотребления, требуемых для решения перспективных космических задач.

Перспективные космические задачи, требующие повышенного энергопотребления

В XXI в. ракетно-космическая техника должна стать одним из основных факторов развития производительных сил в основных областях производственной сферы, определяющих уровень благосостояния общества: в энергетике, производстве материалов и продовольствия, добыче сырьевых ресурсов и др. Как показывают результаты поисковых исследований, РКТ помимо эффективного использования в сложившихся направлениях (глобальные коммуникационные, информационные и навигационные системы, космические комплексы для изучения природных ресурсов, экологического мониторинга и т.д.) в XXI в. может найти широкое применение для решения таких глобальных, тесно связанных между собой проблем, как энергетические и экологические. Создание опережающего научно-технического задела по разработке систем и средств бортовой (солнечной, химической и ядерной) энергетики и реализация его при разработке систем энергоснабжения и двигательных установок позволят повысить эффективность целевого использования КА, обеспечат необходимую базу для выполнения космических программ в XXI в.

Приоритетные направления развития научно-технического задела в области космического энергомашиностроения

В основе современной топливной энергетики лежат два вида топлива — ядерное и химическое. Ядерная энергетика основана на выделении части энергии связи ядерных нуклонов при реакциях деления или синтеза ядра. Химическая энергетика основана на выделении энергии химической связи атомов и молекул топлив. Существует и промежуточный источник энергии — выделение энергии связи атомных электронов. Принципиальная возможность использования этого вида энергии базируется на физике взаимодействия мощного короткоимпульсного лазерного излучения с веществом.

Выделение энергии связи атомных оболочек возможно за время менее 10-17 с при ионизационной перестройке атомных электронных оболочек в сверхсильных, превышающих внутриатомные, электромагнитных полях без затрат энергии на ионизацию и тепловые потери. Современный уровень развития лазерной техники позволяет реализовать указанную перестройку при воздействии на вещество лазерного излучения с интенсивностью т более 1017 Вт/см2 и длительностью импульса воздействия менее 10-13 с. В табл. представлены оценки плотностей энергии, запасенной в перечисленных выше источниках.

Характеристики источников энергии

Процесс взаимодействия высокоинтенсивного (т> 1017 Вт/см2) лазерного излучения сверхкороткой длительности (t < 10-13 с) с веществом можно условно разбить на несколько стадий, схематично показанных на рис.

Стадии процесса взаимодействия высокоинтенсивного лазерного излучения сверхкороткой длительности с веществом
  1. Начальная фаза воздействия сводится к индуцированию в скин-слое размером порядка 10-5 см крупномасштабной вихревой электронной структуры с электрическим полем с напряженностью, превышающей атомную напряженность, и тока свободных электронов с относительной концентрацией порядка 1021 см-3. В этих условиях идет процесс анизотропии ионизации атомов и анизотропии нагрева электронов в плоскости, перпендикулярной лазерному лучу. Частоты процесса порядка плазменной частоты (1015...1016 Гц). Благодаря развитию этих процессов в нелинейной стадии вайбелевской неустойчивости плотность вихревой энергии и плотность энергии анизотропии сравниваются. При этом амплитуда магнитной индукции полей достигает насыщения порядка 10 МГс. Данная стадия воздействия, названная индукционной, характеризуется накоплением энергии в электронном компоненте, при этом спонтанно генерируемые магнитные поля из-за развития вайбелевских неустойчивое — тей поддерживаются на квазистационарном уровне в течение всего времени действия лазерного импульса.
  2. Развитие высокочастотных потенциальных и вихревых неустойчивостей переднего фронта лазерного импульса приводит к появлению эффекта коллективного ускорения малой группы электронов с высоким темпом ускорения — более 10 МэВ/фс. Электростатические ионизационные неустойчивости способствуют образованию в плазменном следе значительной концентрации энергии (более ~107 Дж/см2) потенциальных колебаний вследствие накопления отрицательного объемного заряда за короткие периоды ионизации. Развитие коллективных процессов на переднем фронте лазерного импульса приводит к образованию тонкой структуры фронта размером ~10-7...10-8 см с амплитудами напряженностей магнитного и электрического полей, превышающими порог устойчивости атома. При этом происходит конверсия лазерного излучения в различные виды энергии.
  3. Воздействие на атом индуцированных лазерным излучением вихревых электромагнитных полей с интенсивностью, превышающей атомную, приводит к спонтанному распаду верхних оболочек атома (ионизационному взрыву) за периоды туннельной ионизации ~10-17 с вследствие понижения потенциального барьера воздействием высокочастотных полей. Ионизационный взрыв сопровождается выделением потока энергии интенсивностью более 1017 Вт/см2. За счет спинового механизма разделения электронов по энергетическим состояниям происходит уплотнение низколежащих оболочек вплоть до К-оболочки. Происходит спонтанный рост индукции магнитного поля в атоме за счет перестройки структуры его электронных оболочек. Эта перестройка начинается с пороговой величины индукции магнитного поля порядка 10 МГс.
  4. Уплотнение низколежащих электронных оболочек атома приводит к их деформации с повышением напряженностей электрического и магнитных пол ей, превышающих запас устойчивости этих оболочек. При этом возрастает вероятность К-захвата электрона ядром. Время К-захвата существенно уменьшается вплоть до времени ионизации верхних оболочек (~10-17 с). Процессы структурной перестройки верхних и нижних электронных оболочек происходят в одном масштабе времени туннельной ионизации (~10-17 с).

Схема К-захвата:

Например,

В отличие от спонтанного К-захват носит стимулированный характер с большей вероятностью и с возбуждением внутренней перестройки структуры ядра. Выделяющаяся из ядра энергия идет на генерацию у-, (в-, х-излучений, образование быстрых конверсионных Оже-электронов. Возможна дальнейшая реакция распада ядра с выходом нейтронов. Такова гипотеза выделения энергии связи атомных оболочек.

 
 
 
вверх!